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Abstract

With an evergrowing number of LLMs reporting superlative
performance for English, their ability to perform equitably for
different dialects of English (i.e., dialect robustness) needs to
be ascertained. Specifically, we use English language (US En-
glish or Indian English) conversations between humans who
play the word-guessing game of ‘taboo‘. We formulate two
evaluative tasks: target word prediction (TWP) (i.e., predict
the masked target word in a conversation) and target word se-
lection (TWS) (i.e., select the most likely masked target word
in a conversation, from among a set of candidate words). Ex-
tending MD3, an existing dialectic dataset of taboo-playing
conversations, we introduce M-MD3, a target-word-masked
version of MD3 with the en-US and en-IN subsets. We cre-
ate two subsets: en-MV (where en-US is transformed to in-
clude dialectal information) and en-TR (where dialectal in-
formation is removed from en-IN). We evaluate one open-
source (Llama3) and two closed-source (GPT-4/3.5) LLMs.
LLMs perform significantly better for US English than Indian
English for both TWP and TWS tasks, for all settings, ex-
hibiting marginalisation against the Indian dialect of English.
While GPT-based models perform the best, the comparatively
smaller models work more equitably after fine-tuning. Our er-
ror analysis shows that the LLMs can understand the dialect
better after fine-tuning using dialectal data. Our evaluation
methodology exhibits a novel way to examine attributes of
language models using pre-existing dialogue datasets.

1 Introduction
Large language models (LLMs)1 based on Transform-
ers (Vaswani et al. 2017) are the state-of-the-art in natural
language processing (NLP), often reporting superlative per-
formance on several NLP tasks (Zhao et al. 2023). These
models predominantly use English language data in their
pre-training corpus. However, being a widely spoken lan-
guage, English takes multiple forms in different parts of the
world. These forms, called dialects or national varieties of
English, collectively constitute the World Englishes (Bolton
2012). While research papers introducing LLMs report per-
formance on English language datasets, recent works high-
light the performance gap between US English and other

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1We use ‘language models’ and ‘large language models/LLMs’
interchangeably in this paper.

Figure 1: Illustration of the two tasks: Target word prediction
(TWP) and Target word selection (TWS). and are the
describer and the guesser respectively in a word-guessing
game of taboo. and refer to Indian English and US
English respectively.

dialects of English for several natural language processing
tasks (Joshi et al. 2024).

Our paper follows this line of work of evaluating LLMs
for dialects of English via conversation understanding. The
choice of conversation understanding as a domain for eval-
uation emerges from the fact that dialectal features are
most visible in free-flowing conversations (Negro and Vietti
2006). Therefore, we investigate the research question:

“In comparison with US English, how effectively can
LLMs understand conversations between speakers of
other national varieties of English?”

To address the research question, we use the MD3 (Eisen-
stein et al. 2023) that consists of manually transcribed dia-
logues between pairs of human participants where each pair
speaks either Indian English or US English. The partici-
pants engage in a focused conversation: they play the word-
guessing game based on the game of ‘Taboo’ (Wikipedia
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Figure 2: Steps for evaluation of dialect robustness.

2023). In the game, a describer must get a guesser to iden-
tify a target word but must not use a set of related words
known as restricted words while describing the target word.
Using this dataset of dialectal dialogues, we introduce two
tasks to evaluate the dialect-robustness of LLMs to under-
stand conversations. They are: (a) Given an input conver-
sation with the target word masked, can the LLM predict
the target word? (referred to as target word prediction) (b)
Given an input conversation with the target word masked
along with a set of candidate target words, can the LLM se-
lect the correct target word? (referred to as target word se-
lection). Our approach of masking the target word is similar
to Dey and Desarkar (2023), who show that masked word
prediction may correlate with automatic dialogue evaluation
metrics. Figure 1 shows an example of the two tasks, where
the language model predicts ‘Justin Bieber’ for target word
prediction, and selects ‘microphone’ among the set of op-
tions for target word selection2. For the two tasks, we extend
MD3 to create a target-word-Masked Multi-Dialect Dataset
of Dialogues (M-MD3)3. M-MD3 consists of (a) conver-
sations between Indian English speakers (en-IN), and con-
versations between US English speakers (en-US), (b) en-US
conversations transformed into en-IN using rule-based per-
turbations (en-MV), (c) en-IN with dialectal information re-
moved (en-TR). We evaluate the performance of three SOTA
large language models (LLMs), one open-source and two
closed-source, employing zero-shot prompting on both pre-
trained and fine-tuned models (where available).

Our evaluation methodology derives from past work that
evaluates LLMs by providing a set of task-specific exam-
ples (Wang et al. 2023). Of particular relevance is the work
by Chalamalasetti et al. (2023), who generate word game
conversations using LLMs and evaluate their ability to pre-
dict the target word. The contributions of our work are:

• We create M-MD3, an extension of MD3, that deals with
two novel evaluative tasks for dialect robustness: target
word prediction and target word selection.

• Our evaluation demonstrates a degraded performance in
the case of Indian English as compared to US English for
all models, supporting existing social disparities between
US and Indian culture in the LLM representations (Khan-
delwal et al. 2024).

2We run experiments on both the tasks for both US and Indian
English conversations. While the examples show expected output,
the LLM may or may not produce the same in the case of our ex-
periments. That is the crux of the evaluation.

3M-MD3 dataset and the related code will be made publicly
available at https://github.com/dipankarsrirag/eval-dialect-robust.

• A comprehensive error analysis to identify specific con-
ditions under which fine-tuning enhances the model’s
performance on Indian English conversations.

Since several LLMs have been deployed as publicly avail-
able dialogue agents4, it is imperative that they are able
to understand conversations for users belonging to diverse
English-speaking subgroups. In the case of our paper, this
refers to dialectal variations. The rest of the paper is or-
ganized as follows. Section 2 introduces our evaluation
methodology. The experiment setup and results are in Sec-
tions 3 and 4 respectively.

2 Methodology
We present our method step-by-step, with a detailed
overview of our evaluation methodology described in Fig-
ure 2. We select two subsets available in MD3: en-IN and
en-US, and filter out the conversations where the guesser
could not identify the target word. We extend MD3 to in-
clude two additional sets of conversations—en-MV and en-
TR, and mask the target words in all four subsets to cre-
ate M-MD3. We ensure that the mask token always appears
at the end of the conversation, warranting the use of auto-
regressive models. This is done by pruning the conversation
to the turn where the guesser utters the target word5.

2.1 Extending MD3
Transforming text in en-US to other dialectal English text
has been explored for low-resource settings (Held, Ziems,
and Yang 2023; Xiao et al. 2023; Liu, Held, and Yang 2023).
To evaluate the efficacy of synthetically transformed dia-
logues, we extend the dataset of dialectal dialogues to in-
clude two additional sets of conversations– en-MV and en-
TR.

en-MV We use Multi-VALUE (Ziems et al. 2023) to trans-
form en-US conversations into en-IN conversations. We call
this set of conversations created by rule-based transforma-
tions en-MV.

en-TR We prompt GPT-4 Turbo Preview(GPT-4; Ope-
nAI 2024) to remove dialectal information from en-IN.
The resultant set of conversations is known as en-TR. The
prompt used to generate such conversations is given below:

“Normalise the conversation. Remove all exaggera-
tions and dialectal information. Return a neutral re-
sponse.”
4ChatGPT https://chat.openai.com/; Accessed on 9th April

2024.
5Details on the masking method with examples are provided in

the Dataset Construction section of the Supplementary material.



Figure 3: M-MD3 as an extension of MD3: (a) Creation of
en-MV and en-TR, and (b) Creation of target-word-masked
conversations.

The use of GPT-4 to transform en-IN conversations some-
times leads to the generation of conversation summaries
rather than transformed conversations6. Due to the varying
lengths of speaker turns, transforming en-US conversations
using Multi-VALUE occasionally fails to output a result.
Such failed transformations are excluded from both the sub-
sets of transformed (en-MV, en-TR) conversations, leading
to fewer conversations in en-MV and en-TR as compared to
en-US and en-IN, respectively, as shown in Tables 1 and 2.

Subset Avg. turns Avg. words Single Multiple

en-US 4.1 42.1 308 106
en-IN 6.8 57.4 153 59

en-MV 4.9 35.2 245 87
en-TR 6.3 42.7 121 50

Table 1: Constructional Statistics of M-MD3. Single and
Multiple refer to the number of conversations with single-
word and multiple-word reference targets, respectively.

2.2 Analysis
Table 1 reports some of the constructional statistics of M-
MD3. For each subset, it reports the average number of di-
alogue turns per conversation, the average word count for
the dialogues uttered by both the describer and the guesser,
and the number of conversations with single-word versus

6More details with examples are discussed in the Transforma-
tion Issues section of the Supplementary material.

multiple-word reference target words. The target words ‘mi-
crophone’ and ‘Justin Bieber’ in Figure 1 are examples of
single-word and multiple-word reference target words, re-
spectively.

We notice a higher number of average turns and words
spoken in en-IN conversations compared to en-US conversa-
tions. This is due to the en-US speakers being more familiar
with the target word compared to en-IN speakers, leading to
shorter gameplay time (Eisenstein et al. 2023). The trend is
also carried over to the transformed conversations in en-MV
(derived from en-US) and en-TR (derived from en-IN).

2.3 Task Definition
As shown in Figure 3, we mask the target word in the con-
versations from all four subsets. The target word occurs in
the last dialogue turn of the conversation, which is spoken
by the guesser7. As a result, we formulate two tasks where
the expected output is to fill the correct word at the masked
position:

• Target Word Prediction (TWP): Given a conversation
with the target word masked, predict the word.

• Target Word Selection (TWS): Given a conversation
with the target word masked and a set of candidate tar-
get words, select one among the candidate set.

In the case of TWP, the LLM may generate any word
within its learned vocabulary, with the expected output being
the reference target word. In the case of TWS, we provide
the LLM with a masked conversation and a set of all target
words in the M-MD3 corpus. The LLM must then select the
most likely target word.

We then use prompting on three LLMs to perform both
tasks (TWP and TWS). As LLMs, we choose models that
have been optimised to follow natural language instructions.
In our case, the instruction is to either predict the masked
target word or select a word from candidate words. Specif-
ically, we use one open-source model, namely, Llama 3
70B Chat (LLAMA-3; Llama Team 2024), and two closed-
source models, namely, GPT-4 and GPT-3.5 Turbo 0125
(GPT-3.5; Ouyang et al. 2022).

3 Experiment Setup
We report the performance on pre-trained and fine-tuned
versions of LLMs using zero-shot prompting. Fine-tuning
is always done ‘in-dialect’ in our case, although there is no
reason to believe that cross-dialect fine-tuning is not possi-
ble.

3.1 Model Parameters
Experiments on GPT-4 and GPT-3.5 are conducted using
OpenAI’s API8. GPT-3.5 is fine-tuned for 5 epochs, sep-
arately for every subset. We select top p as 0.2 to restrict
variability in output generation.

7This always holds because of the way we process the conver-
sations.

8OpenAI API https://platform.openai.com/docs/api-reference;
Accessed on 18th April 2024.



LLAMA-3 is fine-tuned for 20 epochs, with a batch size
of 16, Paged 8-bit AdamW (Dettmers et al. 2022) as the op-
timiser and a learning rate of 2e-4. We use QLoRA adap-
tors, targeting all linear layers, as recommended by Dettmers
et al. (2023). All experiments on LLAMA-3 were performed
using two A100 GPUs.

3.2 Metrics
We report our results on two metrics: accuracy and similar-
ity. Accuracy is the proportion of conversations where the
LLM generated the correct target word. This is a strict met-
ric in that it requires the LLM to generate an exact match to
the reference target word. In the case of TWP, the LLM will
choose from all the words within its vocabulary, while in the
case of TWS, the LLM will choose from the set of candi-
date target words. Therefore, it is trivial that the accuracy
for TWS is expected to be higher than that for TWP. Ac-
curacy metric penalizes models even if the generated target
word partially matches with the reference target word in case
of multi-word reference target as described in Section 2.2.
As similarity, we report the cosine similarity between the
Sentence-BERT embeddings (Reimers and Gurevych 2019)
of the reference target word and the generated target word.
This allows for similar but inexact words generated by the
LLM to be acceptable to the similarity score.

3.3 Experiments
We perform experiments on both the tasks (TWP and TWS)
using all models({pre-trained and fine-tuned} × {GPT-4,
GPT-3.5, LLAMA-3 }). All results are reported only on the
test split of each subset of conversations. All fine-tuned
models are fine-tuned on the training and validation set us-
ing instruction fine-tuning. GPT-4 could not be fine-tuned
because doing so is restricted by OpenAI at the time of writ-
ing this paper. The statistics of Train, Valid, and Test splits
of each subset of M-MD3 are reported in Table 2.

Subset Train Valid Test

en-US 62 41 311
en-IN 31 21 160

en-MV 49 33 250
en-TR 23 17 131

Table 2: Statistics of M-MD3.

4 Results
In this section, we compare the performance of three LLMs
both quantitatively and qualitatively. Note that the same test
split is used to evaluate both pre-trained and fine-tuned ver-
sions, ensuring that the results are comparable.

4.1 Quantitative Results
Table 3 shows the results of our experiments on each task
specified in Section 2.3. We analyse the results as follows.

en-US versus en-IN The focus of this paper is to evaluate
dialect robustness by comparing the performance on en-US
and en-IN. All LLMs perform consistently better on en-US
as compared to en-IN for all configurations. For example, in
the case of LLAMA-3 and TWP, the similarity scores on the
fine-tuned model are 78.0 for en-US and 66.3 for en-IN, with
the drop in performance of 11.7. Even for all three models,
en-US outperforms en-IN on zero-shot performance using
the pre-trained model. From all results, it is clearly under-
stood that, on average, the LLMs understand the US English
dialect better than the Indian English dialect. Only consider-
ing the pre-training setting, GPT-4 outperforms other models
for both en-US and en-IN. However, fine-tuning improves
the performance of LLAMA-3 on en-IN, achieving better re-
sults on both tasks compared to GPT-based models. Inter-
estingly, for LLAMA-3, the performance improvement after
fine-tuning on en-IN is greater compared to fine-tuning on
en-US (represented by ∆).

Impact of transforming conversations As discussed in
section 2.1, we introduced two synthetically transformed
subsets, en-MV and en-TR, to assess the importance of di-
alectal features in LLMs’ understanding of conversations.
Table 3 shows that, on pre-trained models, en-TR conver-
sations have better performance compared to original en-IN
conversations. This suggests that after removing the dialec-
tal information from en-IN, the resulting en-TR conversa-
tions are close to the distribution of the dialect that the LLM
understands. This behaviour is better reflected in GPT-3.5,
potentially, because the LLM has a poor understanding of
en-IN as compared to the other two LLMs. Additionally,
fine-tuning on en-TR conversations does not improve the
task performances in comparison to that on en-IN. This sup-
ports the hypothesis that the removal of dialectal informa-
tion brings the resulting conversation closer to the dialectal
distribution that LLMs understand than the original dialect.

In the case of en-MV, the task performances are consis-
tently lower compared to en-US. For example, in the case
of GPT-3.5 and TWS, the similarity scores on the fine-
tuned model are 80.8 for en-US and 71.5 for en-MV. This
degraded performance shows that the rule-based transfor-
mation into en-IN from en-US reduced the understanding
capacity of LLMs for the resulting conversations, further
strengthening our hypothesis that LLMs perform well for
US English dialects compared to any other varieties, similar
to findings of Ryan, Held, and Yang (2024).

Shorter turns versus Longer turns A trend appears be-
tween the performances of models on each subset of conver-
sations and the constructional properties of these conversa-
tions discussed in Section 2.2. Models report their best per-
formances on the subset with the smallest number of average
turns in a conversation (en-US), and report the worst per-
formance on the subset with the highest number of average
turns in a conversation (en-IN).

TWP versus TWS We now compare the performances of
TWP and TWS. As expected, the similarity and accuracy are
higher in the case of TWS compared to TWP for all three
models, with one exception: the pre-training performance of



Model Subset
TWP TWS

Similarity Accuracy Similarity Accuracy

PT FT ∆ PT FT ∆ PT FT ∆ PT FT ∆

GPT-4

en-US 77.4 - - 67.8 - - 85.7 - - 78.8 - -
en-IN 63.0 - - 45.6 - - 79.0 - - 72.5 - -

en-MV 75.6 - - 60.0 - - 83.6 - - 74.4 - -
en-TR 62.8 - - 45.8 - - 83.4 - - 77.1 - -

δ -14.4 - - -22.0 - - -6.7 - - -6.3 - -

GPT-3.5

en-US 66.3 72.2 5.9 52.7 59.1 6.4 66.4 80.8 14.4 50.8 71.3 20.5
en-IN 53.2 59.1 5.9 34.4 40.0 5.6 61.9 70.7 8.8 47.5 60.6 13.1

en-MV 57.6 71.3 13.7 40.0 54.4 14.4 52.4 71.5 19.1 31.6 57.6 26.0
en-TR 59.4 61.0 1.6 39.7 41.2 1.5 70.7 73.0 2.3 57.3 60.3 3.0

δ -13.1 -13.1 - -18.3 -19.1 - -4.5 -10.1 - -21.0 -16.2 -

LLAMA-3

en-US 70.8 78.0 7.2 60.5 65.3 4.8 78.0 81.8 3.8 67.5 74.6 7.1
en-IN 59.8 66.3 6.5 43.8 54.4 10.6 68.8 80.8 12.0 56.9 74.4 17.5

en-MV 68.6 73.8 5.2 54.0 61.6 7.6 72.3 77.6 5.3 58.8 67.2 8.4
en-TR 60.7 57.5 -3.2 45.8 42.7 -3.1 70.8 79.5 8.7 60.3 72.5 12.2

δ -11.0 -11.7 - -16.7 -10.9 - -9.2 -1.8 - -10.6 -0.2 -

Table 3: Performance on the two tasks: TWP and TWS. PT/FT: Pre-trained/Fine-tuned. δ is the difference in performance
between en-IN and en-US (en-IN minus en-US). ∆ is the difference in performance between FT and PT.

GPT-3.5 on en-MV, where TWP slightly outperforms TWS.
Note that, for pre-trained LLAMA-3, the accuracy on en-IN
is 43.8 for TWP and 56.9 for TWS. Across all configura-
tions, fine-tuning consistently improves the performance of
both TWP and TWS. GPT-4 performs best (only for pre-
trained models) for both TWP and TWS tasks for all subsets.

Model Comparison It can be easily observed from Table
3 that the GPT-4 outperforms the other two LLMs in the pre-
training setting. Interestingly, for TWS, GPT-4 pre-training
performances are better than fine-tuning performances of
GPT-3.5 and LLAMA-3 in most of the cases. Also, GPT-4
performs almost equally well for each subset of M-MD3.
This shows that GPT-4 and LLAMA-3 are more inclusive for
different dialectal variations of English in the pre-training
and fine-tuning setting, respectively.

Pre-training versus Fine-tuning Although the pre-
training performances of GPT-4 are superlative, Table 3
shows that the fine-tuning also improves the performance
of GPT-3.5 and LLAMA-3 across both tasks and four sub-
sets. Fine-tuning is more effective for en-US than en-IN in
the case of GPT-3.5, whereas LLAMA-3 shows the opposite
trend. For GPT-3.5, the most improvement due to fine-tuning
is seen when the models are fine-tuned on en-MV, while
LLAMA-3 shows the highest improvement when fine-tuned
on en-IN.

4.2 Error Analysis
From Test set of each conversation subset, we randomly
select 30 conversations that are mislabeled by GPT-4 and
LLAMA-3, and manually analyse errors among all model

variants across all subsets of conversations. We summarise
the six error categories9 in Table 4. The error types are:

Ambigous Descriptions (AD) This error type is observed
when descriptions lack specificity (given the situational con-
straint on the describer), leading to multiple potential an-
swers. For the example target word–‘engine,’ the description
provided is–‘What we find in our. cars. in the front part?’.
Although these descriptions provide enough information to
guide a human guesser to the right answer, they are often too
vague to guide the LLM to a singular, correct interpretation.

Wrong Descriptions (WD) These errors occur when the
guesser guesses the target word even before the describer
can finish the description completely. In the case of the tar-
get word ‘surname,’ the model infers ‘parent’ when the de-
scription provided is–‘beside your. uh. what is your elder?
Uh what is’. While human guessers might use their cogni-
tive bias to guess correctly without the complete description,
LLMs lack the ability to understand the target word from
such a description.

Broken down description of prompt word (BDD) This
error occurs when the describer breaks down the target word
into subwords and attempts to explain each separately. Gen-
erally, such descriptions involve longer turns. The guesser is
then expected to piece together these fragments to deduce
the original word, as in the case of the target word ‘Billie
Holiday,’ the describer individually describes the subwords
‘Billie’ and ‘Holiday’. In such cases, LLMs sometimes latch

9Additonal examples for each error category are in the Errors
section of the Supplementary material.



Error Type Config GPT-4 LLAMA-3

en-US en-IN en-MV en-TR en-US en-IN en-MV en-TR

AD PT 18 (5) 13 (3) 13 (6) 14 (6) 10 (6) 16 (10) 18 (15) 11 (7)
FT - (-) - (-) - (-) - (-) 7 (6) 9 (4) 13 (13) 11 (6)

WD PT 4 (2) 4 (4) - (-) 3 (3) 3 (2) 5 (5) - (-) 3 (3)
FT - (-) - (-) - (-) - (-) 2 (2) 5 (4) - (-) 3 (2)

BDD PT 3 (2) 16 (5) - (-) 7 (3) - (-) 2 (1) - (-) 3 (2)
FT - (-) - (-) - (-) - (-) - (-) 0 (0) - (-) 2 (3)

CC PT 6 (2) 5 (2) 12 (5) 4 (2) 4 (2) 5 (4) 5 (3) 2 (1)
FT - (-) - (-) - (-) - (-) 2 (1) 4 (2) 3 (2) 2 (0)

PF PT 6 (2) 2 (0) 7 (4) 4 (0) 14 (8) 3 (1) 9 (5) 4 (1)
FT - (-) - (-) - (-) - (-) 7 (5) 1 (1) 5 (4) 3 (0)

ERR PT - (-) - (-) 6 (1) - (-) - (-) - (-) 4 (3) - (-)
FT - (-) - (-) - (-) - (-) - (-) - (-) 3 (1) - (-)

∑ PT 37 (13) 40 (14) 38 (16) 32 (14) 31 (18) 31 (21) 40 (29) 23 (14)
FT - (-) - (-) - (-) - (-) 18 (13) 19 (11) 27 (21) 21 (11)

Table 4: Count of errors of GPT-4 and LLAMA-3 for each subset. PT/FT: Pre-trained/Fine-tuned. ‘X (Y)’ indicates that there
are X errors in TWP and Y errors in TWS.∑ is the sum of errors tagged in the sampled erroneous conversations by a model on
a subset across all error types.

onto the descriptions pertaining to later subwords, predicting
a partially correct target word.

Shared Cultural Context (CC) These errors arise when
the human players use culturally shared notions in a conver-
sation, often due to the describer’s lack of familiarity with
the target word. For example, an Indian describer explains
the word ‘idli’ using examples of breakfast items and then
asks the guesser to infer ‘Adele’. The model is unable to un-
derstand this happening in the conversation.

Public Figure (PF) These errors pertain to inaccurate pre-
dictions generated by the model when the descriptions are
about a well-known public figure. For example, the describer
describes the target word ’Mike Tyson’ as ‘Big guy that
punched people out and he had a little bit of a lisp,’ but the
model generates ‘darth’.

Fallback Error (ERR) While efforts were made to clas-
sify every mislabeled conversation into an error category,
few generated target words were found to be inexact or inac-
curate, even with apt descriptions in the conversations. For
example, the target word–‘Rose’ and the description–‘This
are the types of that’s often given valentine day plant.’, the
model generates ‘Gift’. This example description mentions
the word plant which should have guided the model to a
more specific target word than Gift.

The error types AD, CC, and PF test the model’s ability
to predict the target word based on descriptions influenced
by the describer’s dialect, shared notions with the guesser,
and perceived notions about the target word. Also, some of
the conversations fall into multiple error categories except
in the case of conversations in ERR (which is a mutually
exclusive label).

Table 4 presents the error cases in ‘X (Y)’ which indicates
that there are X errors in TWP and Y errors in TWS for the

corresponding configuration. The benefit of TWS providing
options for the target word is seen in AD, where the alle-
viation is almost uniform across all dialects. The presence
of direct or indirect references to the prompt word helps the
LLM towards a plausible answer, in turn making it easier
for them to choose an option. However, this error reduction
does not extend to CC, which LLMs are unable to detect.

Fine-tuning helps to reduce the errors of AD category
more for conversations of en-IN dialect compared to en-
US. However, after removing the dialectal information, the
conversations are insensitive to fine-tuning for the AD error
cases. Additionally, fine-tuning helps to decrease errors in
the PF category. As expected, it does not significantly re-
duce errors in the WD category.

5 Related Work
Research in dialect robustness stems from the need for
language technologies to be equitable and not reinforce
any negative sentiments against a specific linguistic sub-
group (Blodgett et al. 2020). LLMs perform poorly on sev-
eral downstream tasks (such as the tasks in the GLUE bench-
mark) involving dialects other than mainstream US En-
glish (Joshi et al. 2024; Faisal et al. 2024).

Similar to our work, the evaluation of language under-
standing ability of LLMs has been explored using typical
conversation understanding tasks (Chen et al. 2022) like
conversation summarisation (Gliwa et al. 2019; Chen et al.
2021), conversation completion (Sai et al. 2020; Ueyama
and Kano 2023), or NLU tasks (Faisal et al. 2024). Other
approaches involve conversation-based question-answering
tasks that also evaluate the reasoning abilities of LLMs (Sun
et al. 2019; Qin et al. 2021). Tasks like mask-filling were
used to evaluate LLM-generated responses, more specifi-
cally Dey and Desarkar (2023) do so by making RoBERTa



predict masked keyword utterances when given a context of
dialogue history along with conditions like persona, topic,
and facts. Different from standard language understanding
tasks, Chalamalasetti et al. (2023) presents a novel method
to evaluate the ability of LLMs to act as ‘situational’ lan-
guage understanding agents (Schlangen 2023). They do so
by assigning roles to LLMs and generate dialogues resem-
bling word games such as taboo, and test the language gen-
erating and instruction following abilities of LLMs based on
the quality of game-play leading to successful target word
prediction.

Although we propose a similar approach to evaluation by
utilising conversations of such a word game, our work dif-
fers from theirs in two ways: (a) they use LLM-generated
conversations while we rely on an existing dataset of con-
versations; (b) they do not employ dialects in their conver-
sations while the dataset we use contains information about
the dialects of the human speakers.

6 Conclusion
Although superlative performances have been reported on
LLMs in recent times, recent work shows the performance
gap between US English and other dialects of English. Our
paper presents a first-of-its-kind evaluation of the dialect ro-
bustness of LLMs using their ability to predict target words
in game-playing conversations. We use a dataset of target-
word-masked conversations between US English speakers
and those between Indian English speakers playing a game
of taboo. We evaluate pre-trained and fine-tuned versions
of one open-source and two closed-source models, on two
tasks: target word prediction (TWP) and target word selec-
tion (TWS). Our results show that the LLMs indeed perform
better for en-US as compared to en-IN on both tasks, with
the average performance being higher by 12.66 and 17.4 on
similarity and accuracy scores across all configurations. This
shows that LLMs marginalise or discriminate against speak-
ers of the Indian dialect. We also observe that pre-trained
models report a degraded performance on conversations cre-
ated using both rule-based (en-MV) and LLM-based (en-
TR) transformations, as compared to their source conversa-
tions (en-US and en-IN respectively). However, fine-tuning
on en-MV yields a greater improvement in the task perfor-
mances, as compared to that on en-TR. This shows that the
transformations that introduce dialectal information about
a national variety help in improving the dialect robustness
of LLMs more than the transformations that remove the
said dialectal information. Finally, our error analysis demon-
strates that, while most errors are mitigated by providing op-
tions for masked target word (TWS; in both pre-trained and
fine-tuned variants), LLMs struggle to interpret target words
based on the shared cultural context between speakers.

Our extension M-MD3 is a dataset for TWP and TWS
based on MD3, consisting of four subsets: en-US, en-IN, en-
MV, and en-TR. The dataset opens opportunities for future
evaluations of dialect robustness using similar conversation-
based tasks. Our evaluation methodology can also be applied
to other existing dialogue and discourse datasets, to evaluate
the ability of LLMs on properties other than dialect robust-
ness.

Limitations
The original MD3 paper states that their dataset may over-
represent Western entities to some degree. Therefore, it
is possible that Indian speakers faced difficulties with the
terms. Having said that, the instances selected for our dataset
are the ones where the Indian players guessed the word cor-
rectly. We have not performed a detailed qualitative analysis
of these conversations, except for a cursory sanity check.
We also assume that the dialect of English from each locale
is homogeneous. Assuming that en-IN is the English spoken
in every region of India is an unrealistic generalization of
the diversity of dialects of English. In terms of model fine-
tuning, our paper also does not cover the impact of quantiza-
tion and different fine-tuning (including cross-dialect) tech-
niques on the task.

Ethics Statement
We use a publicly available dataset of conversations consist-
ing of human players engaged in a game of taboo. The topics
discussed in the dataset are fairly general, and are unlikely to
cause distress. The error analysis was performed by one of
the authors of the paper. The AI-transformed (en-TR) con-
versations may contain biased output, arising due to inherent
properties of GPT-based models.
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A Dataset Construction
Table 5 describes the example conversations from extended
MD3 and their corresponding masked versions from M-
MD3. We mask the turn where the guesser utters the target
word to help with formulating our downstream tasks. We
mask the target word by finding the exact match in the con-
versation as shown in the conversations from Table 5. In case
of conversations where an exact match is not found (such as
planets), we find the utterance that is most similar to the tar-
get word using the similarity score10. The rest of the conver-
sation is then pruned to make the masked target word (rep-
resented by ‘[MASK]’) the last token in the conversation.

B Transformation Issues
We transform conversations from en-IN into en-TR, by
prompting11 GPT-4 to remove exaggerations and dialectal
information. As mentioned in Table 6, a ‘typical’ trans-
formed conversation maintains the semantic meaning but
only differs from the original conversation grammatically.
A ‘bad’ example deviates largely from the expected output,
and such examples are excluded from the final set of conver-
sations used in our evaluation.

C Errors
Table 7 describes additional examples for all identified error
types12. As mentioned, each conversation can be classified
under multiple error types. For example, the conversation
about the target word–‘Ryan Reynolds’ is classified as CC,
but can also be classified as PF.

10Described in the Metrics section of the main paper.
11The exact prompt can be found in the Methodology section of

the main paper.
12defined in the Error Analysis section of the main paper.



Target
Word en-IN Masked en-IN

Fisherman

Describer: Uh. What do you
call if we, what will be there
in the water?

Describer: Uh. What do you
call if we, what will be there
in the water?

Guesser: Fishes Guesser: Fishes
Describer: Who will catch
that?

Describer: Who will catch
that?

Guesser: Fisherman. Guesser: [MASK]

Target
Word en-US Masked en-US

Planet
Describer: These are hard
words. um Okay. So there’s.
the Sun and the Moon and all
the rest of them.

Describer: These are hard
words. um Okay. So there’s.
the Sun and the Moon and all
the rest of them.

Guesser: And all the planets? Guesser: [MASK]
(Describer: Yes.)

Table 5: Masking conversations from the extended MD3 to create M-MD3. The text such as this represents the target word
utterance by the guesser which is masked (represented by, [MASK] in the M-MD3 version of the conversation. The rest of the
original conversation is pruned as represented text in parentheses.



Type en-IN en-TR

Typical

Describer: (Uh). What do you
call if we, what will be there
in the water?

Describer: (∅) What do you
call the creatures in the
water?

Guesser: Fish(es) Guesser: Fish(∅).
Describer: Who
will catch that?

Describer: Who catches them?

Guesser: Fisherman. Guesser: Fishermen.

Bad

Describer: There. is a. there
is a character in a movie The character being described is from a

well-known movie and is known for the line
“I am still gorgeous.” This character is
similar to those found in Marvel movies and
has a very muscular physique, which is
achieved through scientific injections that
cause his body to grow. The character being
guessed is Captain America.

Guesser: um
Describer: It’s a very famous
movie and it’s a very. where
is a where you can see famous
dialogue called I am still
gorgeous
Guesser: uh. ok. uh
Describer: character name.
compare like Marvel movie
Guesser: So. uh
Describer: very muscular
body gives scientifically.
injections
Guesser: ok
Describer: His body will grow
Guesser: uh Captain America

Table 6: Example transformations of en-IN to en-TR. We utilise GPT-4 to generate the response. The text in parentheses refers
to the omission/removal of certain filler and exaggerated words, and the text such as this, refers to the words or sentences that
were rephrased to convey the original meaning.



Type Target Word Conversation Model
Prediction

AD Fisherman Describer: Okay. Okay. A. guy um wants to um okay. Guy
catching something in the water.

Fish

Guesser: [MASK]

WD Atlantic
Ocean

Describer: One of the. of the of world.

Kanyakumari

Guesser: Of the seventh wonder of the world. Taj mahal? Is
it regarding sea?
Describer: No no no the. Towards the bottom of India.
Guesser: Is it regarding
Describer: what we have?
Guesser: [MASK]

BDD Russian
Language

Describer: Ok. Ah Largest continent in the world

Russian

Guesser: Ok.
Describer: Ah like area wise. Which country?
Guesser: Largest. vast area. vast area? Russia but.
Describer: We need to add N over there at the end.
Guesser: Russian
Describer: We speak
Guesser: What they speak?
Describer: Yeah. Ok.
Guesser: [MASK]

CC Ryan
Reynolds

Describer: It is like. One of the. Pen name. which we used
in school school days.

Flair

Guesser: Cello point pen. Fine Grip
Describer: No no no
Guesser: Reynolds
Describer: Uh yeah yeah
Guesser: This is a second word or first word.
Describer: Yeah this is second word
Guesser: First word is. Name
Describer:Yeah name related to the same
Guesser: [MASK]

PF Steve Jobs

Describer: Ok. He is a famous person and he is a. a. for.
what we call? . Um now it is a. Its. giving competition to
Android. what we call? Steve
Guesser: ok. so he is the fond ok sorry
Describer: he is a founder of so and so company. Its a U.
S. company
Guesser: so it is giving competition to Android means
Google ok.. So
Describer: and he is the founder of that company
Guesser: [MASK]

ERR Podium Describer: Okay um. uh. well I isn’t sure I’m not sure
but uh letting are seeing. Well it’s like preacher are
churching. I am standing behind this. uh. in in used for
speaker.

Pulpit

Guesser: [MASK]

Table 7: Example conversations (‘Conversation’) for each error type (‘Type’) along with the reference target word (‘Target
Word’) and the generated target word (‘Model Prediction’). All model predictions are generated using the pre-trained variants
of GPT-4 and LLAMA-3.


